The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.
Conformational effects on tryptophan fluorescence in cyclic hexapeptides.
阅读:8
作者:Pan Chia-Pin, Barkley Mary D
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2004 | 起止号: | 2004 Jun;86(6):3828-35 |
| doi: | 10.1529/biophysj.103.038901 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
