The de novo synthesis of compatible solutes is an essential part of the cellular osmotic stress response. Upon an osmotic challenge, it is regulated by the immediate biochemical activation of preformed enzymes and by activation of gene expression. Whereas the transcriptional response has been investigated intensively, the mechanisms by which enzymes are activated in osmotic stress situations are still elusive. Here, we address this topic for the moderately halotolerant cyanobacterium Synechocystis sp. PCC 6803, which synthesizes glucosylglycerol as a compatible solute. The key enzyme of the glucosylglycerol pathway (GgpS) is inhibited by nucleic acids in a sequence- and length-independent manner. The protein binds DNA, RNA, and heparin via a salt-dependent electrostatic interaction with the negatively charged backbone of the polyanions. Mechanistically, DNA binding to the enzyme causes noncompetitive inhibition of GgpS activity. The interaction of the enzyme and nucleic acids under in vivo conditions is indicated by the co-purification of both after cross-linking in Synechocystis cells. We propose a novel mechanism of activity regulation by the nonspecific salt-dependent binding of an enzyme to nucleic acids.
A novel mechanism of osmosensing, a salt-dependent protein-nucleic acid interaction in the cyanobacterium Synechocystis Species PCC 6803.
阅读:6
作者:Novak Jens F, Stirnberg Marit, Roenneke Benjamin, Marin Kay
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2011 | 起止号: | 2011 Feb 4; 286(5):3235-41 |
| doi: | 10.1074/jbc.M110.157032 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
