The quality of aerial remote sensing imaging is heavily impacted by the thermal distortions in optical cameras caused by temperature fluctuations. This paper introduces a lumped parameter thermal network (LPTN) model for the optical system of aerial cameras, aiming to serve as a guideline for their thermal design. By optimizing the thermal resistances associated with convection and radiation while considering the camera's unique internal architecture, this model endeavors to improve the accuracy of temperature predictions. Additionally, the proposed LPTN framework enables the establishment of a heat leakage network, which offers a detailed examination of heat leakage paths and rates. This analysis offers valuable insights into the thermal performance of the camera, thereby guiding the refinement of heating zones and the development of effective active control strategies. Operating at a total power consumption of 26 W, the thermal system adheres to the low-power limit. Experimental data from thermal tests indicate that the temperatures within the optical system are maintained consistently between 19 °C and 22 °C throughout the flight, with temperature gradients remaining below 3 °C, satisfying the temperature requirements. The proposed LPTN model exhibits swiftness and efficacy in determining thermal characteristics, significantly facilitating the thermal design process and ensuring optimal power allocation for aerial cameras.
Lumped Parameter Thermal Network Modeling and Thermal Optimization Design of an Aerial Camera.
阅读:4
作者:Fan Yue, Feng Wei, Ren Zhenxing, Liu Bingqi, Wang Dazhi
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Jun 19; 24(12):3982 |
| doi: | 10.3390/s24123982 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
