Density estimation of tiger and leopard using spatially explicit capture-recapture framework.

阅读:6
作者:Rather Tahir Ali, Kumar Sharad, Khan Jamal Ahmad
The conservation of large carnivores often requires precise and accurate estimates of their populations. Being cryptic and occurring at low population densities, obtaining an unbiased population estimate is difficult in large carnivores. To overcome the uncertainties in the conventional capture-recapture (CR) methods used to estimate large carnivore densities, more robust methods such as spatially explicit capture-recapture (SECR) framework are now widely used. We modeled the CR data of tiger (Panthera tigris tigris) and leopard (Panthera pardus fusca) in the SECR framework with biotic and abiotic covariates likely believed to influence their densities. An effort of 2,211 trap nights resulted in the capture of 33 and 38 individual tigers and leopards. A total of 95 and 74 detections of tigers and leopards were achieved using 35 pairs of camera traps. Tiger and leopard density were estimated at 4.71 ± 1.20 (3.05-5.11) and 3.03 ± 0.78 (1.85-4.99) per 100 km(2). Our results show that leopard density increased with high road density, high terrain ruggedness and habitats with high percentage of cropland and natural vegetation. The tiger density was positively influenced by the mosaic of cropland and natural vegetation. This study provides the first robust density estimates of tiger and leopard within the study area. Our results support the notion that large carnivores can attain moderate densities within human-dominated regions around protected areas relying on domestic livestock. Broader management strategies aimed at maintaining wild prey in the human-dominated areas around protected areas are necessary for large and endangered carnivores' sustenance in the buffer zones around protected areas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。