Predicting sea levels using ML algorithms in selected locations along coastal Malaysia.

阅读:4
作者:Hazrin Nur Alyaa, Chong Kai Lun, Huang Yuk Feng, Ahmed Ali Najah, Ng Jing Lin, Koo Chai Hoon, Tan Kok Weng, Sherif Mohsen, El-Shafie Ahmed
In consideration of the distinct behavior of machine learning (ML) algorithms, six well-defined ML used were carried out in this study for predicting sea level on a day-to-day basis. Data compiled from 1985 to 2018 was utilized for training and testing the developed models. An assessment of the multiple statistics-driven regression algorithms resulted such that each tested location was associated with a particular preferred model. The following were the developed best models for their respective study areas: In Peninsular Malaysia, the interactions linear regression model was the best at Pulau Langkawi (RMSE = 19.066), the Matern 5/2 gaussian process regression model at Geting (RMSE = 49.891), and the trilayered artificial neural network at Pulau Pinang (RMSE = 20.026), while the linear regression model was the best at Sandakan in Sabah, East Malaysia (RMSE = 14.054). Other metrics, such as MAE and R-square, were also at their best values, each providing its best values, further substantiating the RMSE respectively, at each of the study areas. These empirical statistics (or metrics) also revealed that despite employing sea level as the sole parameter, results obtained were exceptional better when utilizing a 7-day lag, regardless of the model used. Notably, lag variables with less than a 7-day lag could degrade the model's accuracy in representing ground reality. The study emphasizes the importance of thorough training and testing of ML to aid decision-makers in developing mitigation actions for the climate change phenomena of sea level rise through reliable ML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。