Microplastic (MP) pollution has recently emerged as a critical global environmental issue. Laundry wastewater is a significant contributor to MP pollution, containing high concentrations of MPs. Although coagulation has recently been widely applied to remove MPs from such wastewater, its efficiency remains poor, and the removal mechanisms are not yet fully elucidated. In this study, the occurrence and characteristics of MPs in raw domestic laundry wastewater were investigated. The coagulation process was combined with ultrafiltration (UF) membrane filtration to enhance MP removal. The results showed that the concentrations of MPs in laundry wastewater ranged from 9000 to 11,000 particles/L, with fibrous particles constituting the majority (42.6%) and polyester accounting for 68.2% of detected MPs. Using aluminium chloride and ferric chloride as coagulants, maximum removal efficiencies of 91.7 and 98.3% were achieved, respectively. Mechanistic analysis revealed that charge neutralization played a dominant role during coagulation. Fourier transform infrared spectroscopy further demonstrated the formation of new functional groups, substituted benzene rings, and the presence of Fe-O and Al-O bonds, indicating the interaction between MPs and coagulants. Furthermore, the UF membrane was used to remove fibrous MPs and MPs with low densities. These MPs had not been removed with pre-coagulation. The removal efficiency of these MPs reached 96 ± 2%, reducing their concentration to only 60 particles/L in the UF permeate. These findings highlight the synergistic potential of coagulation and UF membrane filtration for effective MP removal and provide a valuable reference for advancing wastewater treatment technologies targeting MP pollution.
Removal of Microplastics from Laundry Wastewater Using Coagulation and Membrane Combination: A Laboratory-Scale Study.
阅读:13
作者:Luu Thi Trang, Truong Dai Quyet, Nguyen Van Nam, Jeong Sanghyun, Nguyen Thi Thu Trang, Do Van Manh, Vigneswaran Saravanamuthu, Nguyen Tien Vinh
| 期刊: | Membranes | 影响因子: | 3.600 |
| 时间: | 2025 | 起止号: | 2025 Feb 4; 15(2):47 |
| doi: | 10.3390/membranes15020047 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
