Syringaresinol Reverses Age-Related Skin Atrophy by Suppressing FoxO3a-Mediated Matrix Metalloproteinase-2 Activation in Copper/Zinc Superoxide Dismutase-Deficient Mice

丁香脂素通过抑制 FoxO3a 介导的基质金属蛋白酶-2 活化来逆转铜/锌超氧化物歧化酶缺乏小鼠中与年龄相关的皮肤萎缩

阅读:6
作者:Juewon Kim, Toshihiko Toda, Kenji Watanabe, Shuichi Shibuya, Yusuke Ozawa, Naotaka Izuo, Siyoung Cho, Dae Bang Seo, Koutaro Yokote, Takahiko Shimizu

Abstract

Aging is characterized by accumulation of chronic and irreversible oxidative damage, chronic inflammation, and organ dysfunction. Superoxide dismutase (SOD) serves as a major enzyme for cellular superoxide radical metabolism and physiologically regulates cellular redox balance throughout the body. Copper/zinc superoxide dismutase-deficient (SOD1-/-) mice showed diverse phenotypes associated with enhanced oxidative damage in whole organs. Here, we found that oral treatment with syringaresinol (also known as lirioresinol B), which is the active component in the berries of Korean ginseng (Panax ginseng C.A. Meyer), attenuated the age-related changes in Sod1-/- skin. Interestingly, syringaresinol morphologically normalized skin atrophy in Sod1-/- mice and promoted fibroblast outgrowth from Sod1-/- skin in vitro. These protective effects were mediated by the suppression of matrix metalloproteinase-2 overproduction in Sod1-/- skin, but not by increased collagen expression. Syringaresinol also decreased the oxidative damage and the phosphorylation of FoxO3a protein, which was a transcriptional factor of matrix metalloproteinase-2, in Sod1-/- skin. These results strongly suggest that syringaresinol regulates the FoxO3-matrix metalloproteinase-2 axis in oxidative damaged skin and exhibits beneficial effects on age-related skin involution in Sod1-/- mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。