New medications are desperately needed to combat rising drug resistance among tuberculosis (TB) patients. New agents should ideally work through unique targets to avoid being hampered by preexisting clinical resistance to existing treatments. The enoyl-acyl carrier protein reductase InhA of M. tuberculosis is one of the most crucial targets since it is a promising target that has undergone extensive research for anti-tuberculosis drug development. A well-known scaffold for a variety of biological activities, including antitubercular activity, is the molecular linkage of a1,2,3-triazole with an acetamide group. As a result, in the current study, which was aided by ligand-based molecular modeling investigations, 1,2,3-triazolesweredesigned and synthesized adopting the CuAAC aided cycloaddition of 1-(4-(prop-2-yn-1-yloxy)phenyl)ethanone with appropriate acetamide azides. Standard spectroscopic methods were used to characterize the newly synthesized compounds. In vitro testing of the proposed compounds against the InhA enzyme was performed. All the synthesized inhibitors completely inhibited the InhA enzyme at a concentration of 10 µM that exceeded Rifampicin in terms of activity. Compounds 9, 10, and 14 were the most promising InhA inhibitors, with IC(50) values of 0.005, 0.008, and 0.002 µM, respectively. To promote antitubercular action and investigate the binding manner of the screened compounds with the target InhA enzyme's binding site, a molecular docking study was conducted.
Design, Synthesis and Molecular Docking of Novel Acetophenone-1,2,3-Triazoles Containing Compounds as Potent Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors.
阅读:5
作者:Albelwi Fawzia Faleh, Abdu Mansour Hanaa M, Elshatanofy Maram M, El Kilany Yeldez, Kandeel Kamal, Elwakil Bassma H, Hagar Mohamed, Aouad Mohamed Reda, El Ashry El Sayed H, Rezki Nadjet, El Sawy Maged A
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2022 | 起止号: | 2022 Jun 27; 15(7):799 |
| doi: | 10.3390/ph15070799 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
