Methylation at specific histone lysine residues is a critical post-translational modification that alters chromatin architecture, and dysregulated lysine methylation/demethylation is associated with the silencing of tumor suppressor genes. The enzyme lysine-specific demethylase 1 (LSD1) complexed to specific transcription factors catalyzes the oxidative demethylation of mono- and dimethyllysine 4 of histone H3 (H3K4me and H3K4me2, respectively). We have previously reported potent (bis)urea and (bis)thiourea LSD1 inhibitors that increase cellular levels of H3K4me and H3K4me2, promote the re-expression of silenced tumor suppressor genes and suppress tumor growth in vitro. Here we report the design additional (bis)urea and (bis)thiourea LSD1 inhibitors that feature 3-5-3 or 3-6-3 carbon backbone architectures. Three of these compounds displayed single-digit IC50 values in a recombinant LSD1 assay. In addition, compound 6d exhibited an IC50 of 4.2μM against the Calu-6 human lung adenocarcinoma line, and 4.8μM against the MCF7 breast tumor cell line, in an MTS cell viability assay. Following treatment with 6b-6d, Calu-6 cells exhibited a significant increase in the mRNA expression for the silenced tumor suppressor genes SFRP2, HCAD and p16, and modest increases in GATA4 message. The compounds described in this paper represent the most potent epigenetic modulators in this series, and have potential for use as antitumor agents.
Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures.
阅读:5
作者:Nowotarski Shannon L, Pachaiyappan Boobalan, Holshouser Steven L, Kutz Craig J, Li Youxuan, Huang Yi, Sharma Shiv K, Casero Robert A Jr, Woster Patrick M
| 期刊: | Bioorganic & Medicinal Chemistry | 影响因子: | 3.000 |
| 时间: | 2015 | 起止号: | 2015 Apr 1; 23(7):1601-12 |
| doi: | 10.1016/j.bmc.2015.01.049 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
