Ceramide channel: Structural basis for selective membrane targeting.

阅读:7
作者:Perera Meenu N, Ganesan Vidyaramanan, Siskind Leah J, Szulc Zdzislaw M, Bielawska Alicja, Bittman Robert, Colombini Marco
A ceramide commonly found in mammalian cells, C16-ceramide (N-palmitoyl-d-erythro-sphingosine), is capable of forming large, protein-permeable channels in the mitochondrial outer membrane (MOM). However, C16-ceramide is unable to permeabilize the plasma membrane of erythrocytes. This specificity is unexpected considering that ceramide forms channels in simple phosphoglycerolipid membranes. Synthetic analogs of C16-ceramide with targeted changes at each of the functional regions of the molecule including methylation, altered hydrocarbon chain length, and changes in the stereochemistry, were tested to probe the role of ceramide's molecular features on its ability to form channels in these two different membrane types. The ability to permeabilize the MOM was relatively insensitive to modifications of the various functional groups of ceramide whereas the same modifications resulted in plasma membrane permeabilization (a gain of function rather than a loss of function). Some analogs (ceramine, NBD-labeled ceramide, C18,1 ceramide) gained another function, the ability to inhibit cytochrome oxidase. The gain of deleterious functions indicates that constraints on the structure of ceramide that is formed by the cell's synthetic machinery includes the avoidance of deleterious interactions. We propose that the specific structure of ceramide limits the size of its interactome (both proteins and lipids) thus reducing the likelihood of unwanted side effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。