BACKGROUND: Di-(2-ethylhexyl)-phthalate (DEHP) is a widely used plasticizer that imparts flexibility to polyvinyl chloride. We have recently reported that clinically relevant concentrations of DEHP can affect electrical coupling between cardiac myocytes causing significant rhythm disturbances. The underlying causes for this effect are currently unknown. OBJECTIVES: To use data on global mRNA expression as a tool to reveal possible pathways leading to arrhythmogenic effects of DEHP. METHODS: Rat neonatal cardiomyocytes were treated with 50 μg/mL DEHP for 72 h. Extracted RNA samples were hybridized onto Affymetrix Rat Gene 1.0 ST arrays. The mRNA expression of a subset of genes was validated by qRT-PCR. In a second set of experiments, cells were treated in a concentration dependent manner to identify genes affected by low DEHP concentrations. RESULTS: DEHP exposure is associated with global changes in mRNA expression, with differentially expressed genes overrepresented in 47 Gene Ontology categories. Modified expression was detected for genes associated with cell electrical activity, calcium handling, adhesion and microtubular transport. For a number of key proteins, including kinesin, TGFβ2, α-tubulin, and α1 & β1 integrins, changes in mRNA levels were confirmed on the level of the protein expression. A number of genes associated with cell adhesion and electrical activity were identified as early DEHP targets as they were affected by concentrations as low as 1 μg/mL. CONCLUSIONS: Exposure of neonatal rat cardiomyocytes to clinically relevant DEHP concentrations leads to global changes in mRNA expression. These changes help to explain the arrhythmogenic effects of phthalates on these cells.
Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity.
阅读:5
作者:Posnack Nikki Gillum, Lee Norman H, Brown Ronald, Sarvazyan Narine
| 期刊: | Toxicology | 影响因子: | 4.600 |
| 时间: | 2011 | 起止号: | 2011 Jan 11; 279(1-3):54-64 |
| doi: | 10.1016/j.tox.2010.09.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
