Cocaine exposure modulates dopamine and adenosine signaling in the fetal brain.

阅读:4
作者:Kubrusly Regina C C, Bhide Pradeep G
Exposure to cocaine during the fetal period can produce significant lasting changes in the structure and function of the brain. Cocaine exerts its effects on the developing brain by blocking monoamine transporters and impairing monoamine receptor signaling. Dopamine is a major central target of cocaine. In a mouse model, we show that cocaine exposure from embryonic day 8 (E8) to E14 produces significant reduction in dopamine transporter activity, attenuation of dopamine D1-receptor function and upregulation of dopamine D2-receptor function. Cocaine's effects on the D1-receptor are at the level of protein expression as well as activity. The cocaine exposure also produces significant increases in basal cAMP levels in the striatum and cerebral cortex. The increase in the basal cAMP levels was independent of dopamine receptor activity. In contrast, blocking the adenosine A2a receptor downregulated the basal cAMP levels in the cocaine-exposed brain to physiological levels, suggesting the involvement of adenosine receptors in mediating cocaine's effects on the embryonic brain. In support of this suggestion, we found that the cocaine exposure downregulated adenosine transporter function. We also found that dopamine D2- and adenosine A2a-receptors antagonize each other's function in the embryonic brain in a manner consistent with their interactions in the mature brain. Thus, our data show that prenatal cocaine exposure produces direct effects on both the dopamine and adenosine systems. Furthermore, the dopamine D2 and adenosine A2a receptor interactions in the embryonic brain discovered in this study unveil a novel substrate for cocaine's effects on the developing brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。