The use of prescription opioid analgesics, particularly oxycodone, has dramatically increased, and parallels escalated opioid abuse and drug-related deaths worldwide. Understanding the molecular mechanisms underlying the development of opioid dependence and expanding treatment options to counter prescription opioid abuse has become a critical public health matter. In the present study, we first evaluated the reinforcing effects of oxycodone in a rat model of self-administration and then explored the potential utility of two novel high affinity dopamine D3 receptor (D3R) antagonists/partial agonists, CAB2-015 and BAK4-54, for treatment of prescription opioid abuse and dependence. We found that rats acquired oxycodone self-administration rapidly within a range of unit doses that was similar to that for heroin, confirming that oxycodone has significant abuse potential. Strikingly, pretreatment with either CAB2-015 or BAK4-54 (0.4-10Â mg/kg, i.p.) dose-dependently decreased oxycodone self-administration, and shifted the oxycodone dose-response curve downward. Repeated pretreatment with CAB2-015 or BAK4-54 (0.4-4Â mg/kg) facilitated extinction and inhibited oxycodone-induced reinstatement of drug-seeking behavior. In addition, pretreatment with CAB2-015 or BAK4-54 (4-10Â mg/kg) also dose-dependently decreased oxycodone-enhanced locomotor activity, but only CAB2-015 decreased oral sucrose self-administration. These data suggest that D3R antagonists may be suitable alternatives or adjunctive to opioid-based medications currently used clinically in treating opioid addiction and that the D3R-selective ligands (CAB2-015 or BAK4-54) provide new lead molecules for development.
The novel dopamine D3 receptor antagonists/partial agonists CAB2-015 and BAK4-54 inhibit oxycodone-taking and oxycodone-seeking behavior in rats.
阅读:5
作者:You Zhi-Bing, Gao Jun-Tao, Bi Guo-Hua, He Yi, Boateng Comfort, Cao Jianjing, Gardner Eliot L, Newman Amy Hauck, Xi Zheng-Xiong
| 期刊: | Neuropharmacology | 影响因子: | 4.600 |
| 时间: | 2017 | 起止号: | 2017 Nov;126:190-199 |
| doi: | 10.1016/j.neuropharm.2017.09.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
