This paper describes an application of a machine learning approach for parameter optimization. The method is demonstrated for the elasto-viscoplastic model with both isotropic and kinematic hardening. It is shown that the proposed method based on long short-term memory networks allowed a reasonable agreement of stress-strain curves to be obtained for cyclic deformation in a low-cycle fatigue regime. The main advantage of the proposed approach over traditional optimization schemes lies in the possibility of obtaining parameters for a new material without the necessity of conducting any further optimizations. As the power and robustness of the developed method was demonstrated for very challenging problems (cyclic deformation, crystal plasticity, self-consistent model and isotropic and kinematic hardening), it is directly applicable to other experiments and models.
Crystal Plasticity Parameter Optimization in Cyclically Deformed Electrodeposited Copper-A Machine Learning Approach.
阅读:2
作者:Frydrych Karol, Tomczak Maciej, Papanikolaou Stefanos
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2024 | 起止号: | 2024 Jul 9; 17(14):3397 |
| doi: | 10.3390/ma17143397 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
