Polymeric micelles with cross-linked ionic cores of poly(methacrylic acid) and nonionic shell of poly(ethylene oxide) (cl-micelles) are shown here to readily internalize in epithelial cancer cells but not in normal epithelial cells that form tight junctions (TJ). The internalization of such cl-micelles in the cancer cells proceeded mainly through caveolae-mediated endocytosis. In confluent normal epithelial cells this endocytosis route was absent at the apical side and the cl-micelles sequestered in TJ regions of the cell membrane without entering the cells for at least 24h. Disruption of the TJ by calcium deprivation resulted in redistribution of cl-micelles inside the cells. In cancer cells following initial cellular entry the cl-micelles bypassed the early endosomes and reached the lysosomes within 30min. This allowed designing cl-micelles with cytotoxic drug, doxorubicin, linked via pH-sensitive hydrazone bonds, which were cleaved in the acidic environment of lysosomes resulting in accumulation of the drug in the nucleus after 5h. Such pH-sensitive cl-micelles displayed selective toxicity to cancer cells but were non-toxic to normal epithelial cells. In conclusion, we describe major difference in interactions of cl-micelles with cancer and normal cells that can lead to development of novel drug delivery system with reduced side effects and higher efficacy in cancer chemotherapy.
The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents.
阅读:2
作者:Sahay Gaurav, Kim Jong Oh, Kabanov Alexander V, Bronich Tatiana K
| 期刊: | Biomaterials | 影响因子: | 12.900 |
| 时间: | 2010 | 起止号: | 2010 Feb;31(5):923-33 |
| doi: | 10.1016/j.biomaterials.2009.09.101 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
