Anti-Diabetic Activities and Molecular Docking Studies of Aryl-Substituted Pyrazolo[3,4-b]pyridine Derivatives Synthesized via Suzuki Cross-Coupling Reaction.

阅读:3
作者:Rafique Iqra, Maqbool Tahir, Rutjes Floris P J T, Irfan Ali, Jardan Yousef A Bin
Pyrazolo[3,4-b]pyridine scaffolds have been heavily exploited in the development of nitrogen-containing heterocycles with numerous therapeutic applications in the field of medicinal and pharmaceutical chemistry. The present work describes the synthesis of eighteen biaryl pyrazolo[3,4-b]pyridine ester (6a-i) and hydrazide (7a-i) derivatives via the Suzuki cross-coupling reaction. These derivatives were subsequently screened for their therapeutic potential to inhibit the diabetic α-amylase enzyme, which is a key facet of the development of anti-diabetic agents. Initially, the ethyl 4-(4-bromophenyl)-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridine-6-carboxylate 4 was synthesized through a modified Doebner method under solvent-free conditions, providing an intermediate for further derivatization with a 60% yield. This intermediate 4 was subjected to Suzuki cross-coupling, reacting with electronically diverse aryl boronic acids to obtain the corresponding pyrazolo[3,4-b]pyridine ester derivatives (6a-i). Following this, the biaryl ester derivatives (6a-i) were converted into hydrazide derivatives (7a-i) through a straightforward reaction with hydrazine monohydrate and were characterized using (1)H-NMR, (13)C-NMR, and LC-MS spectroscopic techniques. These derivatives were screened for their α-amylase inhibitory chemotherapeutic efficacy, and most of the biaryl ester and hydrazide derivatives demonstrated promising amylase inhibition. In the (6a-i) series, the compounds 6b, 6c, 6h, and 6g exhibited excellent inhibition, with almost similar IC(50) values of 5.14, 5.15, 5.56, and 5.20 μM, respectively. Similarly, in the series (7a-i), the derivatives 7a, 7b, 7c, 7d, 7f, 7g, and 7h displayed excellent anti-diabetic activities of 5.21, 5.18, 5.17, 5.12, 5.10, 5.16, and 5.19 μM, respectively. These in vitro results were compared with the reference drug acarbose (IC(50) = 200.1 ± 0.15 μM), demonstrating better anti-diabetic inhibitory activity in comparison to the reference drug. The in silico molecular docking study results were consistent with the experimental biological findings, thereby supporting the in vitro pharmaceutical efficacy of the synthesized derivatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。