Biocatalysts are widely used in industry, but few examples of the use of oxidoreductases, in which enzymatic function often requires electrons, have been reported. NADPH is a cofactor that supplies an electron to oxidoreductases, but is consequently inactivated and no longer able to act as an electron donor. NADP+ can not receive electrons from electrodes through straightforward electrochemistry owing to its complicated three-dimensional structure. This study reports that bipyridines effectively mediate electron transfer between an electrode and NADP+, allowing them to serve as electron mediators for NADPH production. Using bipyridines, quinones, and anilines, which have negative oxidation-reduction potentials, an electrochemical investigation was conducted into whether electrons were transferred to NADP+. Only bipyridines with a reduction potential near -1.0 V exhibited electron transfer. Furthermore, the NADPH production level was measured using spectroscopy. NADPH was efficiently produced using bipyridines, such as methyl viologen and ethyl viologen, in which the bipyridyl 1- and 1'-positions bear small substituents. However, methyl viologen caused a dehydrogenation reaction of NADPH, making it unsuitable as an electron mediator for NADPH production. The dehydrogenation reaction did not occur using ethyl viologen. These results indicated that NADP+ can be reduced more effectively using substituents that prevent a dehydrogenation reaction at the bipyridyl 1- and 1'-positions while maintaining the reducing power.
Bipyridines mediate electron transfer from an electrode to nicotinamide adenine dinucleotide phosphate.
阅读:5
作者:Wayama Fumiya, Hatsugai Noriyuki, Okumura Yasuaki
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022 Jun 16; 17(6):e0269693 |
| doi: | 10.1371/journal.pone.0269693 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
