During mitosis, the Golgi membranes in mammalian cells undergo a continuous disassembly process and generate mitotic fragments that are distributed into the daughter cells and reassembled into new Golgi after mitosis. This disassembly and reassembly process is critical for Golgi biogenesis during cell division, but the underlying molecular mechanism is poorly understood. In this study, we have recapitulated this process using an in vitro assay and analyzed the proteins that are associated with interphase and mitotic Golgi membranes using quantitative proteomics that combines the isobaric tags for relative and absolute quantification approach with OFFGEL isoelectric focusing separation and LC-MALDI-MS/MS. A total of 1,193 Golgi-associated proteins were identified and quantified. These included broad functional categories: Golgi structural proteins, Golgi resident enzymes, SNAREs, Rab GTPases, and secretory and cytoskeletal proteins. More importantly, the combination of the quantitative proteomic approach with Western blot analysis allowed us to unveil 86 proteins with significant changes in abundance under the mitotic condition compared to the interphase condition. Altogether, this systematic quantitative proteomic study revealed candidate proteins of the molecular machinery that controls the Golgi disassembly and reassembly processes in the cell cycle.
Quantitative analysis of liver Golgi proteome in the cell cycle.
阅读:4
作者:Chen Xuequn, Andrews Philip C, Wang Yanzhuang
| 期刊: | Methods in Molecular Biology | 影响因子: | 0.000 |
| 时间: | 2012 | 起止号: | 2012;909:125-40 |
| doi: | 10.1007/978-1-61779-959-4_9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
