MTMU: Multi-domain Transformation based Mamba-UNet designed for unruptured intracranial aneurysm segmentation.

阅读:5
作者:Li Bing, Liu Nian, Bai Jianbin, Xu Jianfeng, Tang Yi, Liu Yan
The management of Unruptured Intracranial aneurysm (UIA) depends on the shape parameters assessment of lesions, which requires target segmentation. However, the segmentation of UIA is a challenging task due to the small volume of the lesions and the indistinct boundary between the lesion and the parent arteries. To relieve these issues, this article proposes a multi-domain transformation-based Mamba-UNet (MTMU) for UIA segmentation. The model employs a U-shaped segmentation architecture, equipped with the feature encoder consisting of a set of Mamba and Flip (MF) blocks. It endows the model with the capability of long-range dependency perceiving while balancing computational cost. Fourier Transform (FT) based connection allows for the enhancement of edge information in feature maps, thereby mitigating the difficulties in feature extraction caused by the small size of the target and the limited number of foreground pixels. Additionally, a sub task providing target geometry constrain (GC) is utilized to constrain the model training, aiming at splitting aneurysm dome from its parent artery accurately. Extensive experiments have been conducted to demonstrate the superior performance of the proposed method compared to other competitive medical segmentation methods. The results prove that the proposed method have great clinical application prospects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。