Shear wave propagation in viscoelastic media: validation of an approximate forward model.

阅读:3
作者:Zvietcovich Fernando, Baddour Natalie, Rolland Jannick P, Parker Kevin J
Many approaches to elastography incorporate shear waves; in some systems these are produced by acoustic radiation force (ARF) push pulses. Understanding the shape and decay of propagating shear waves in lossy tissues is key to obtaining accurate estimates of tissue properties, and so analytical models have been proposed. In this paper, we reconsider a previous analytical model with the goal of obtaining a computationally straightforward and efficient equation for the propagation of shear waves from a focal push pulse. Next, this model is compared with an experimental optical coherence tomography (OCT) system and with finite element models, in two viscoelastic materials that mimic tissue. We find that the three different cases-analytical model, finite element model, and experimental results-demonstrate reasonable agreement within the subtle differences present in their respective conditions. These results support the use of an efficient form of the Hankel transform for both lossless (elastic) and lossy (viscoelastic) media, and for both short (impulsive) and longer (extended) push pulses that can model a range of experimental conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。