Accurate prediction of solar irradiance holds significant value for renewable energy usage and power grid management. However, traditional forecasting methods often overlook the time dependence of solar irradiance sequences and the varying importance of different influencing factors. To address this issue, this study proposes a dual-path information fusion and twin attention-driven solar irradiance forecasting model. The proposed framework comprises three components: a residual attention temporal convolution block (RACB), a dual-path information fusion module (DIFM), and a twin self-attention module (TSAM). These components collectively enhance the performance of multi-step solar irradiance forecasting. First, the RACB is designed to enable the network to adaptively learn important features while suppressing irrelevant ones. Second, the DIFM is implemented to reinforce the model's robustness against input data variations and integrate multi-scale features. Lastly, the TSAM is introduced to extract long-term temporal dependencies from the sequence and facilitate multi-step prediction. In the solar irradiance forecasting experiments, the proposed model is compared with six benchmark models across four datasets. In the one-step predictions, the average performance metrics RMSE, MAE, and MAPE of the four datasets decreased within the ranges of 0.463-2.390 W/m2, 0.439-2.005 W/m2, and 1.3-9.2%, respectively. Additionally, the average R2 value across the four datasets increased by 0.008 to 0.059. The experimental results indicate that the model proposed in this study exhibits enhanced accuracy and robustness in predictive performance, making it a reliable alternative for solar irradiance forecasting.
Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction.
阅读:3
作者:Yang Yushi, Tang Zhanjun, Li Zhiyuan, He Jianfeng, Shi Xiaobing, Zhu Yuting
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Aug 28; 23(17):7469 |
| doi: | 10.3390/s23177469 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
