Ozone Variability and Anomalies Observed during SENEX and SEAC(4)RS Campaigns in 2013.

阅读:4
作者:Kuang Shi, Newchurch Michael J, Thompson Anne M, Stauffer Ryan M, Johnson Bryan J, Wang Lihua
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper-tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anti-correlated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to mid-troposphere are within 3.0-4.1 ppbv·K(-1). The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52±33% (35±24 ppbv) with a mean minimum relative humidity of 2.3±1.7%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。