Visual Navigation for Recovering an AUV by Another AUV in Shallow Water.

阅读:3
作者:Liu Shuang, Xu Hongli, Lin Yang, Gao Lei
Autonomous underwater vehicles (AUVs) play very important roles in underwater missions. However, the reliability of the automated recovery of AUVs has still not been well addressed. We propose a vision-based framework for automatically recovering an AUV by another AUV in shallow water. The proposed framework contains a detection phase for the robust detection of underwater landmarks mounted on the docking station in shallow water and a pose-estimation phase for estimating the pose between AUVs and underwater landmarks. We propose a Laplacian-of-Gaussian-based coarse-to-fine blockwise (LCB) method for the detection of underwater landmarks to overcome ambient light and nonuniform spreading, which are the two main problems in shallow water. We propose a novel method for pose estimation in practical cases where landmarks are broken or covered by biofouling. In the experiments, we show that our proposed LCB method outperforms the state-of-the-art method in terms of remote landmark detection. We then combine our proposed vision-based framework with acoustic sensors in field experiments to demonstrate its effectiveness in the automated recovery of AUVs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。