Lysophosphatidic acid (LPA) has diverse actions on the cardiovascular system and is widely reported to modulate multiple ion currents in some cell types. However, little is known about its electrophysiological effects on cardiac myocytes. This study investigated whether LPA has electrophysiological effects on isolated rabbit myocardial preparations. The results indicate that LPA prolongs action potential duration at 90% repolarization (APD(90)) in a concentration- and frequency-dependent manner in isolated rabbit ventricular myocytes. The application of extracellular LPA significantly increases the coefficient of APD(90) variability. LPA increased L-type calcium current (I(Ca,L)) density without altering its activation or deactivation properties. In contrast, LPA has no effect on two other ventricular repolarizing currents, the transient outward potassium current (I(to)) and the delayed rectifier potassium current (I(K)). In arterially perfused rabbit left ventricular wedge preparations, the monophasic action potential duration, QT interval, and Tpeak-end are prolonged by LPA. LPA treatment also significantly increases the incidence of ventricular tachycardia induced by S(1)S(2) stimulation. Notably, the effects of LPA on action potentials and I(Ca,L) are PTX-sensitive, suggesting LPA action requires a G(i)-type G protein. In conclusion, LPA prolongs APD and increases electrophysiological instability in isolated rabbit myocardial preparations by increasing I(Ca,L) in a G(i) protein-dependent manner.
Lysophosphatidic acid increases the electrophysiological instability of adult rabbit ventricular myocardium by augmenting L-type calcium current.
阅读:3
作者:Wei Yong, Zhao Li-qun, Qi Bao-zhen, Xiao Xing, He Li, Zhou Gen-qing, Chen Song-wen, Li Hong-li, Ruan Lei, Zhang Cun-tai, Liu Shao-wen
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2012 | 起止号: | 2012;7(9):e45862 |
| doi: | 10.1371/journal.pone.0045862 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
