Financial time series forecasting using twin support vector regression.

阅读:3
作者:Gupta Deepak, Pratama Mahardhika, Ma Zhenyuan, Li Jun, Prasad Mukesh
Financial time series forecasting is a crucial measure for improving and making more robust financial decisions throughout the world. Noisy data and non-stationarity information are the two key factors in financial time series prediction. This paper proposes twin support vector regression for financial time series prediction to deal with noisy data and nonstationary information. Various interesting financial time series datasets across a wide range of industries, such as information technology, the stock market, the banking sector, and the oil and petroleum sector, are used for numerical experiments. Further, to test the accuracy of the prediction of the time series, the root mean squared error and the standard deviation are computed, which clearly indicate the usefulness and applicability of the proposed method. The twin support vector regression is computationally faster than other standard support vector regression on the given 44 datasets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。