The spectral conjugate gradient (SCG) technique is highly efficient in addressing large-scale unconstrained optimization challenges. This paper presents a structured SCG approach that combines the Quasi-Newton direction and an extended conjugacy condition. Drawing inspiration from the Fletcher-Reeves conjugate gradient (CG) parameter, this method is tailored to improve the general structure of the CG approach. We rigorously establish the global convergence of the algorithm for general functions, using criteria from a Wolfe-line search. Numerical experiments performed on some unconstrained optimization problems highlight the superiority of this new algorithm over certain CG methods with similar characteristics. In the context of portfolio selection, the proposed method extended to address the problem of stock allocation, ensuring optimized returns while minimizing risks. Empirical evaluations demonstrate the efficiency of the method, demonstrating significant improvements in computational efficiency and optimization outcomes.
A spectral Fletcher-Reeves conjugate gradient method with integrated strategy for unconstrained optimization and portfolio selection.
阅读:4
作者:Salihu Nasiru, Ibrahim Sulaiman M, Kaelo P, Moghrabi Issam A R, Madi Elissa Nadia
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 20(4):e0320416 |
| doi: | 10.1371/journal.pone.0320416 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
