SNR Prediction with ANN for UAV Applications in IoT Networks Based on Measurements.

阅读:5
作者:Cardoso Caio M M, Barros Fabrício J B, Carvalho Joel A R, Machado Artur A, Cruz Hugo A O, de Alcântara Neto Miércio C, Araújo Jasmine P L
The 5G deployment brings forth the usage of Unmanned Aerial Vehicles (UAV) to assist wireless networks by providing improved signal coverage, acting as relays or base-stations. Another technology that could help achieve 5G massive machine-type communications (mMtc) goals is the Long Range Wide-Area Network (LoRaWAN) communication protocol. This paper studied these complementary technologies, LoRa and UAV, through measurement campaigns in suburban, densely forested environments. Downlink and uplink communication at different heights and spreading factors (SF) demonstrate distinct behavior through our analysis. Moreover, a neural network was trained to predict the measured signal-to-noise ratio (SNR) behavior and results compared with SNR regression models. For the downlink scenario, the neural network results show a root mean square error (RMSE) variation between 1.2322-1.6623 dB, with an error standard deviation (SD) less than 1.6730 dB. For the uplink, the RMSE variation was between 0.8714-1.3891 dB, with an error SD less than 1.1706 dB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。