Catharanthus roseus L. (G.) Don is the most widely studied plant because of its high pharmacological value. In vitro culture uses various plant parts such as leaves, nodes, internodes and roots for inducing callus and subsequent plant regeneration in C. roseus. However, till now, little work has been conducted on anther tissue using plant tissue culture techniques. Therefore, the aim of this work is to establish a protocol for in vitro induction of callus by utilizing anthers as explants in MS (Murashige and Skoog) medium fortified with different concentrations and combinations of PGRs. The best callusing medium contains high α-naphthalene acetic acid (NAA) and low kinetin (Kn) concentrations showing a callusing frequency of 86.6%. SEM-EDX analysis was carried out to compare the elemental distribution on the surfaces of anther and anther-derived calli, and the two were noted to be nearly identical in their elemental composition. Gas chromatography-mass spectrometry (GC-MS) analysis of methanol extracts of anther and anther-derived calli was conducted, which revealed the presence of a wide range of phytocompounds. Some of them are ajmalicine, vindolinine, coronaridine, squalene, pleiocarpamine, stigmasterol, etc. More importantly, about 17 compounds are exclusively present in anther-derived callus (not in anther) of Catharanthus. The ploidy status of anther-derived callus was examined via flow cytometry (FCM), and it was estimated to be 0.76 pg, showing the haploid nature of callus. The present work therefore represents an efficient way to produce high-value medicinal compounds from anther callus in a lesser period of time on a larger scale.
Phytochemical Composition and Detection of Novel Bioactives in Anther Callus of Catharanthus roseus L.
阅读:3
作者:Bansal Yashika, Mujib A, Mamgain Jyoti, Dewir Yaser Hassan, Rihan Hail Z
| 期刊: | Plants-Basel | 影响因子: | 4.100 |
| 时间: | 2023 | 起止号: | 2023 May 31; 12(11):2186 |
| doi: | 10.3390/plants12112186 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
