Research on task allocation for multiple automated guided vehicles (AGVs) in factory environments is a key topic in intelligent manufacturing. Existing studies often struggle to balance fairness and priority in task allocation, leading to low AGV utilization and high no-load distances. Moreover, the stability and applicability of task allocation algorithms in real-world production environments face significant challenges. To address these issues, a mathematical model is formulated with the objective of minimizing the no-load distances of all AGVs in material delivery tasks. The model is subsequently enhanced by incorporating task allocation balance and priority. To solve the optimization model, an improved particle swarm optimization algorithm is proposed, and extensive simulation experiments are conducted based on a real factory environment. By comparing the optimization results of the proposed algorithm with those of the latest multi-population genetic algorithm (MGA) and the market-based bundle task allocation method (MBTA), it is evident that both the proposed algorithm and MGA achieve higher AGV utilization and shorter total task completion times than MBTA, while also optimizing no-load distances. Although the running time of the proposed algorithm is slightly higher than that of MBTA, it is significantly lower than that of MGA, and its overall performance in reducing no-load distances and enhancing AGV utilization is superior to that of MGA. The proposed method can be applied to guide multiple AGVs in multi-material delivery tasks in real factory environments.
Optimization of multi-AGV task allocation based on an improved PSO algorithm.
阅读:4
作者:Zhu Yazhen, Song Qing, Li Meng
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 2; 20(6):e0321616 |
| doi: | 10.1371/journal.pone.0321616 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
