Spectral Networks and Stability Conditions for Fukaya Categories with Coefficients.

阅读:10
作者:Haiden F, Katzarkov L, Simpson C
Given a holomorphic family of Bridgeland stability conditions over a surface, we define a notion of spectral network which is an object in a Fukaya category of the surface with coefficients in a triangulated DG-category. These spectral networks are analogs of special Lagrangian submanifolds, combining a graph with additional algebraic data, and conjecturally correspond to semistable objects of a suitable stability condition on the Fukaya category with coefficients. They are closely related to the spectral networks of Gaiotto-Moore-Neitzke. One novelty of our approach is that we establish a general uniqueness results for spectral network representatives. We also verify the conjecture in the case when the surface is disk with six marked points on the boundary and the coefficients category is the derived category of representations of an A2 quiver. This example is related, via homological mirror symmetry, to the stacky quotient of an elliptic curve by the cyclic group of order six.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。