Understanding the role of genes in human disease is of high importance. However, identifying genes associated with human diseases requires laborious experiments that involve considerable effort and time. Therefore, a computational approach to predict candidate genes related to complex diseases including cancer has been extensively studied. In this study, we propose a convolutional neural network-based knowledge graph-embedding model (KGED), which is based on a biological knowledge graph with entity descriptions to infer relationships between biological entities. As an application demonstration, we generated gene-interaction networks for each cancer type using gene-gene relationships inferred by KGED. We then analyzed the constructed gene networks using network centrality measures, including betweenness, closeness, degree, and eigenvector centrality metrics, to rank the central genes of the network and identify highly correlated cancer genes. Furthermore, we evaluated our proposed approach for prostate, breast, and lung cancers by comparing the performance with that of existing approaches. The KGED model showed improved performance in predicting cancer-related genes using the inferred gene-gene interactions. Thus, we conclude that gene-gene interactions inferred by KGED can be helpful for future research, such as that aimed at future research on pathogenic mechanisms of human diseases, and contribute to the field of disease treatment discovery.
Identifying disease-gene associations using a convolutional neural network-based model by embedding a biological knowledge graph with entity descriptions.
阅读:6
作者:Choi Wonjun, Lee Hyunju
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2021 | 起止号: | 2021 Oct 15; 16(10):e0258626 |
| doi: | 10.1371/journal.pone.0258626 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
