Potential role for the Metnase transposase fusion gene in colon cancer through the regulation of key genes

Metnase 转座酶融合基因通过调控关键基因在结肠癌中发挥潜在作用

阅读:6
作者:Panagiotis Apostolou, Maria Toloudi, Eleni Kourtidou, Georgia Mimikakou, Ioanna Vlachou, Marina Chatziioannou, Vasiliki Kipourou, Ioannis Papasotiriou

Abstract

The Metnase fusion gene consists of a SET histone methyltransferase domain and a transposase domain from Mariner transposase. This transposable element is involved in chromosome decatenation, enhances DNA repair, promotes foreign DNA integration, and assists topoisomerase II function. This study investigates the role of Metnase in colon cancer homeostasis and maintenance of the stemness phenotype in colon cancer stem cells (CSCs). Silencing of Metnase was performed in human cancer cell lines before and after treatment with cisplatin, and in colon CSCs. Subsequent changes in the expression of genes involved in repair mechanisms, DNA synthesis, topoisomerase II function, and metastasis as well stemness transcription factors were studied with RT-qPCR experiments. Cellular viability and apoptosis were evaluated by flow cytometry. The results suggest that Metnase influences the expression of many genes involved in the above processes. Furthermore, Metnase levels appear to impact upon expression of NANOG, OCT3/4, and SOX2. Suppression of Metnase also led to an increase in apoptosis. Therefore, Metnase may possess an important role in DNA repair, topoisomerase II function, and the maintenance of stemness during colon cancer development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。