An Elite Hybrid Particle Swarm Optimization for Solving Minimal Exposure Path Problem in Mobile Wireless Sensor Networks.

阅读:4
作者:Binh Nguyen Thi My, Mellouk Abdelhamid, Binh Huynh Thi Thanh, Loi Le Vu, San Dang Lam, Anh Tran Hai
Mobile wireless sensor networks (MWSNs), a sub-class of wireless sensor networks (WSNs), have recently been a growing concern among the academic community. MWSNs can improve network coverage quality which reflects how well a region of interest is monitored or tracked by sensors. To evaluate the coverage quality of WSNs, we frequently use the minimal exposure path (MEP) in the sensing field as an effective measurement. MEP refers to the worst covered path along which an intruder can go through the sensor network with the lowest possibility of being detected. It is greatly valuable for network designers to recognize the vulnerabilities of WSNs and to make necessary improvements. Most prior studies focused on this problem under a static sensor network, which may suffer from several drawbacks; i.e., failure in sensor position causes coverage holes in the network. This paper investigates the problem of finding the minimal exposure paths in MWSNs (hereinafter MMEP). First, we formulate the MMEP problem. Then the MMEP problem is converted into a numerical functional extreme problem with high dimensionality, non-differentiation and non-linearity. To efficiently cope with these characteristics, we propose HPSO-MMEP algorithm, which is an integration of genetic algorithm into particle swarm optimization. Besides, we also create a variety of custom-made topologies of MWSNs for experimental simulations. The experimental results indicate that HPSO-MMEP is suitable for the converted MMEP problem and performs much better than existing algorithms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。