The rapid development of the internet has brought about a comprehensive transformation in human life. However, the challenges of cybersecurity are becoming increasingly severe, necessitating the implementation of effective security mechanisms. Cybersecurity situational awareness can effectively assess the network status, facilitating the formulation of better cybersecurity defense strategies. However, due to the low accuracy of existing situational assessment methods, situational assessment remains a challenge. In this study, a new situational assessment method, MSWOA-BiGRU, combining optimization algorithms and temporal neural networks, was proposed. Firstly, a scientific indicator system proposed in this research is used to calculate the values of each indicator. Then, the Analytic Hierarchy Process is used to derive the actual situation values, which serve as labels. Taking into account the temporal nature of network traffic, the BiGRU model is utilized for cybersecurity situational assessment. After integrating time-related features and network traffic characteristics, the situational assessment value is obtained. During the evaluation process, a whale optimization algorithm (MSWOA) improved with a mix of strategies proposed in this study was employed to optimize the model. The performance of the proposed MSWOA-BiGRU model was evaluated on publicly available real network security datasets. Experimental results indicate that compared to traditional optimization algorithms, the optimization performance of MSWOA has seen significant enhancement. Furthermore, MSWOA-BiGRU demonstrates superior performance in cybersecurity situational assessment compared to existing evaluation methods.
A novel network security situation assessment model based on multiple strategies whale optimization algorithm and bidirectional GRU.
阅读:5
作者:Zhang Shengcai, Fu Qiming, An Dezhi, He Zhenxiang, Liu Zhenyu
| 期刊: | PeerJ Computer Science | 影响因子: | 2.500 |
| 时间: | 2023 | 起止号: | 2023 Dec 12; 9:e1729 |
| doi: | 10.7717/peerj-cs.1729 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
