Aims: Design and synthesis of antimicrobial prototypes that are capable of eradicating bacterial biofilm formation that is responsible for many health challenges particularly with antibiotic-resistant bacterial species. Materials and Methods: The utility of 1,3-diarylenones, aka chalcones, 3a-i and 8a-j as building blocks to construct the corresponding bis-pyrazoline derivatives 5aa-bh and 9ad-bj. Screening the antibacterial behavior of the novel bis-pyrazoline derivatives against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant S. aureus (VRSA) bacterial strains was investigated. Results: Chalcones were used as building scaffolds to construct two series of di- and trisubstituted bis-pyrazoline derivatives. Numerous novel bis-compounds displayed decent bacterial biofilm suppression. Conclusions: Two regioisomeric series of bis-chalcones were designed and constructed, and their structural diversity was manipulated to access the intrinsically bioactive, pyrazoline ring. The newly synthesized bis-pyrazoline derivatives presented decent antibacterial behavior against multiple drug-resistant bacterial strands (MSSA, MRSA, and VRSA).
Two Novel Regioisomeric Series of Bis-pyrazolines: Synthesis, In Silico Study, DFT Calculations, and Comparative Antibacterial Potency Profile against Drug-Resistant Bacteria; MSSA, MRSA, and VRSA.
阅读:5
作者:Kassab Refaie M, Zaki Magdi E A, Al-Hussain Sami A, Abdelmonsef Aboubakr H, Muhammad Zeinab A
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2024 | 起止号: | 2024 Jan 9; 9(3):3349-3362 |
| doi: | 10.1021/acsomega.3c06348 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
