LSEWOA: An Enhanced Whale Optimization Algorithm with Multi-Strategy for Numerical and Engineering Design Optimization Problems.

阅读:4
作者:Wei Junhao, Gu Yanzhao, Yan Yuzheng, Li Zikun, Lu Baili, Pan Shirou, Cheong Ngai
The Whale Optimization Algorithm (WOA) is a bio-inspired metaheuristic algorithm known for its simple structure and ease of implementation. However, WOA suffers from issues such as premature convergence, low population diversity in the later stages of iteration, slow convergence rate, low convergence accuracy, and an imbalance between exploration and exploitation. In this paper, we proposed an enhanced whale optimization algorithm with multi-strategy (LSEWOA). LSEWOA employs Good Nodes Set Initialization to generate uniformly distributed whale individuals, a newly designed Leader-Followers Search-for-Prey Strategy, a Spiral-based Encircling Prey strategy inspired by the concept of Spiral flight, and an Enhanced Spiral Updating Strategy. Additionally, we redesigned the update mechanism for convergence factor a to better balance exploration and exploitation. The effectiveness of the proposed LSEWOA was evaluated using CEC2005, and the impact of each improvement strategy was analyzed. We also performed a quantitative analysis of LSEWOA and compare it with other state-of-the-art metaheuristic algorithms in 30/50/100 dimensions. Finally, we applied LSEWOA to nine engineering design optimization problems to verify its capability in solving real-world optimization challenges. Experimental results demonstrate that LSEWOA outperformed better than other algorithms and successfully addressed the shortcomings of the classic WOA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。