Continuous inhalation of coal dust among coal workers leads to a variety of disorders. The present study aims to evaluate the potential oxidative stress associated with coal dust generated from coal mining activities among exposed workers through the antioxidant enzyme system, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). In this study cohort, intensive coal mine workers were assessed for antioxidant variations. Blood samples were collected from dust-exposed workers (engaged in different activities at coal mines; n = 311) and residents of the same city (nonexposed, control group; n = 50). The workers' exposure to coal dust was categorized based on working area (administrative group, surface workers, underground workers), working hours (up to 8 h and more than 8 h), and time of service. The results showed significantly altered activities of SOD, CAT, and GSH among the whole exposed group and its categories compared to the control group. A significant difference was also observed between high- and low-exposure groups. Statistical analysis revealed a negative correlation between antioxidant activity (catalase and SOD) and coal dust levels. Besides, coal exposure was associated with the time of service, smoking status, and dietary habits. The findings of this study reveal higher oxidative stress among highly exposed coal mine workers (underground workers > surface workers > administrative group > nonexposed group), and longer working hours have more pronounced adverse effects on workers' health.
Coal Dust-Induced Systematic Hypoxia and Redox Imbalance among Coal Mine Workers.
阅读:3
作者:Batool Aima Iram, Naveed Naima Huma, Aslam Mehwish, da Silva Juliana, Rehman Muhammad Fayyaz Ur
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2020 | 起止号: | 2020 Oct 21; 5(43):28204-28211 |
| doi: | 10.1021/acsomega.0c03977 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
