DOC-IDS: A Deep Learning-Based Method for Feature Extraction and Anomaly Detection in Network Traffic.

阅读:4
作者:Yoshimura Naoto, Kuzuno Hiroki, Shiraishi Yoshiaki, Morii Masakatu
With the growing diversity of cyberattacks in recent years, anomaly-based intrusion detection systems that can detect unknown attacks have attracted significant attention. Furthermore, a wide range of studies on anomaly detection using machine learning and deep learning methods have been conducted. However, many machine learning and deep learning-based methods require significant effort to design the detection feature values, extract the feature values from network packets, and acquire the labeled data used for model training. To solve the aforementioned problems, this paper proposes a new model called DOC-IDS, which is an intrusion detection system based on Perera's deep one-class classification. The DOC-IDS, which comprises a pair of one-dimensional convolutional neural networks and an autoencoder, uses three different loss functions for training. Although, in general, only regular traffic from the computer network subject to detection is used for anomaly detection training, the DOC-IDS also uses multi-class labeled traffic from open datasets for feature extraction. Therefore, by streamlining the classification task on multi-class labeled traffic, we can obtain a feature representation with highly enhanced data discrimination abilities. Simultaneously, we perform variance minimization in the feature space, even on regular traffic, to further improve the model's ability to discriminate between normal and abnormal traffic. The DOC-IDS is a single deep learning model that can automatically perform feature extraction and anomaly detection. This paper also reports experiments for evaluating the anomaly detection performance of the DOC-IDS. The results suggest that the DOC-IDS offers higher anomaly detection performance while reducing the load resulting from the design and extraction of feature values.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。