This work reported gold nanoparticles (AuNPs)-based colorimetric immunoassay with the Cu-based metal-organic framework (MOF) to load pyrroloquinoline quinone (PQQ) for the catalytic oxidation of cysteine. In this method, both Cu(2+) and PQQ in the MOF could promote the oxidation of inducer cysteine by redox cycling, thus limiting the cysteine-induced aggregation of AuNPs and achieving dual signal amplification. Specifically, the recombinant carcinoembryonic antigen (CEA) targets were anchored on the MOF through the metal coordination interactions between the hexahistidine (His(6)) tag in CEA and the unsaturated Cu(2+) sites in MOF. The CEA/PQQ-loaded MOF could be captured by the antibody-coated ELISA plate to catalyze the oxidation of cysteine. However, once the target CEA in the samples bound to the antibody immobilized on the plate surface, the attachment of CEA/PQQ-loaded MOF would be limited. Cysteine remaining in the solution would trigger the aggregation of AuNPs and cause a color change from red to blue. The target concentration was positively related to the aggregation and color change of AuNPs. The signal-on competitive plasmonic immunoassay exhibited a low detection limit with a linear range of 0.01-1 ng/mL. Note that most of the proteins in commercial ELISA kits are recombinant with a His(6) tag in the N- or C-terminal, so the work could provide a sensitive plasmonic platform for the detection of biomarkers.
Gold Nanoparticles-Based Colorimetric Immunoassay of Carcinoembryonic Antigen with Metal-Organic Framework to Load Quinones for Catalytic Oxidation of Cysteine.
阅读:3
作者:Yu Zhao-Jiang, Yang Ting-Ting, Liu Gang, Deng De-Hua, Liu Lin
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Oct 18; 24(20):6701 |
| doi: | 10.3390/s24206701 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
