Time-to-digital converter (TDC) is the key technology to realize accurate time delay measurement in high-precision optical fiber time-frequency transmission and synchronization, optical sensing and many scientific applications. The performance of FPGA-TDC based on the carry chain is sensitive to the operating temperature. This paper presents a parallel multichain cross segmentation method, without multitime measurements, which merges multichain into an equivalent chain, achieving low temperature coefficient and maintaining high precision. The equivalent chain breaks the limit of the intrinsic cell delay of a single carry chain, improves the precision and reduces the impact of temperature variation significantly. A two-channel TDC based on parallel multichain cross segmentation method is implemented in a 28 nm fabrication process Kintex-7 FPGA. The results show that the performance of TDC is improved with the increase of the number of chains. The 10-chain TDC with 1.3 ps resolution, 4.6 ps single-shot precision performs much better than the plain TDC with 11.4 ps resolution, 8.7 ps single-shot precision. The resolution is stable with 0.0002 ps/°C temperature coefficient under an operating temperature range from 25 °C to 70 °C. Moreover, the proposed method reduces the complexity of the circuit and the resource usage.
A Low Temperature Coefficient Time-to-Digital Converter with 1.3 ps Resolution Implemented in a 28 nm FPGA.
阅读:5
作者:Mao Xiangyu, Yang Fei, Wei Fang, Shi Jiawen, Cai Jian, Cai Haiwen
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Mar 16; 22(6):2306 |
| doi: | 10.3390/s22062306 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
