NMR is a powerful analytical technique that combines an exquisite qualitative power, related to the unicity of the spectra of each molecule in a mixture, with an intrinsic quantitativeness, related to the fact that the integral of each peak only depends on the number of nuclei (i.e., the amount of substance times the number of equivalent nuclei in the signal), regardless of the molecule. Signal integration is the most common approach in quantitative NMR but has several drawbacks (vide infra). An alternative is to use hard modeling of the peaks. In this paper, we present pyIHM, a Python package for the quantification of the components of NMR spectra through indirect hard modeling, and we discuss some numerical details of the implementation that make this approach robust and reliable.
pyIHM: Indirect Hard Modeling, in Python.
阅读:3
作者:Bruno Francesco, Fiorucci Letizia, Vignoli Alessia, Meyer Klas, Maiwald Michael, Ravera Enrico
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 97(8):4598-4605 |
| doi: | 10.1021/acs.analchem.4c06484 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
