Understanding human behaviours through video analysis has seen significant research progress in recent years with the advancement of deep learning. This topic is of great importance to the next generation of intelligent visual surveillance systems which are capable of real-time detection and analysis of human behaviours. One important application is to automatically monitor and detect individuals who are in crisis at suicide hotspots to facilitate early intervention and prevention. However, there is still a significant gap between research in human action recognition and visual video processing in general, and their application to monitor hotspots for suicide prevention. While complex backgrounds, non-rigid movements of pedestrians and limitations of surveillance cameras and multi-task requirements for a surveillance system all pose challenges to the development of such systems, a further challenge is the detection of crisis behaviours before a suicide attempt is made, and there is a paucity of datasets in this area due to privacy and confidentiality issues. Most relevant research only applies to detecting suicides such as hangings or jumps from bridges, providing no potential for early prevention. In this research, these problems are addressed by proposing a new modular design for an intelligent visual processing pipeline that is capable of pedestrian detection, tracking, pose estimation and recognition of both normal actions and high risk behavioural cues that are important indicators of a suicide attempt. Specifically, based on the key finding that human body gestures can be used for the detection of social signals that potentially precede a suicide attempt, a new 2D skeleton-based action recognition algorithm is proposed. By using a two-branch network that takes advantage of three types of skeleton-based features extracted from a sequence of frames and a stacked LSTM structure, the model predicts the action label at each time step. It achieved good performance on both the public dataset JHMDB and a smaller private CCTV footage collection on action recognition. Moreover, a logical layer, which uses knowledge from a human coding study to recognise pre-suicide behaviour indicators, has been built on top of the action recognition module to compensate for the small dataset size. It enables complex behaviour patterns to be recognised even from smaller datasets. The whole pipeline has been tested in a real-world application of suicide prevention using simulated footage from a surveillance system installed at a suicide hotspot, and preliminary results confirm its effectiveness at capturing crisis behaviour indicators for early detection and prevention of suicide.
Towards Building a Visual Behaviour Analysis Pipeline for Suicide Detection and Prevention.
阅读:3
作者:Li Xun, Onie Sandersan, Liang Morgan, Larsen Mark, Sowmya Arcot
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Jun 14; 22(12):4488 |
| doi: | 10.3390/s22124488 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
