BACKGROUND: Genomic selection estimates genetic merit based on dense SNP (single nucleotide polymorphism) genotypes and phenotypes. This requires that SNPs explain a large fraction of the genetic variance. The objectives of this work were: (1) to estimate the fraction of genetic variance explained by dense genome-wide markers using 54Â K SNP chip genotyping, and (2) to evaluate the effect of alternative marker-based relationship matrices and corrections for the base population on the fraction of the genetic variance explained by markers. METHODS: Two alternative marker-based relationship matrices were estimated using 35 706 SNPs on 1086 dairy bulls. Both pedigree- and marker-based relationship matrices were fitted simultaneously or separately in an animal model to estimate the fraction of variance not explained by the markers, i.e. the fraction explained by the pedigree. The phenotypes considered in the analysis were the deregressed estimated breeding values (dEBV) for milk, fat and protein yield and for somatic cell score (SCS). RESULTS: When dEBV were not sufficiently accurate (50 or 70%), the estimated fraction of the genetic variance explained by the markers was around 65% for yield traits and 45% for SCS. Scaling marker genotypes with locus-specific frequencies of heterozygotes slightly increased the variance explained by markers, compared with scaling with the average frequency of heterozygotes across loci. The estimated fraction of the genetic variance explained by the markers using separately both relationships matrices followed the same trends but the results were underestimated. With less accurate dEBV estimates, the fraction of the genetic variance explained by markers was underestimated, which is probably an artifact due to the dEBV being estimated by a pedigree-based animal model. CONCLUSIONS: When using only highly accurate dEBV, the proportion of the genetic variance explained by the Illumina 54Â K SNP chip was approximately 80% for Brown Swiss cattle. These results depend on the SNP chip used and the family structure of the population, i.e. more dense SNPs and closer family relationships are expected to result in a higher fraction of the variance explained by the SNPs.
Estimates of missing heritability for complex traits in Brown Swiss cattle.
阅读:4
作者:Román-Ponce Sergio-Iván, Samoré Antonia B, Dolezal Marlies A, Bagnato Alessandro, Meuwissen Theo H E
| 期刊: | Genetics Selection Evolution | 影响因子: | 3.100 |
| 时间: | 2014 | 起止号: | 2014 Jun 4; 46(1):36 |
| doi: | 10.1186/1297-9686-46-36 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
