Laser capture microdissection and genetic analysis of carbon-labeled Kupffer cells.

阅读:6
作者:Gehring Stephan, Sabo Edmond, San Martin Maryann E, Dickson Elizabeth M, Cheng Chao-Wen, Gregory Stephen H
AIM: To develop a method of labeling and micro-dissecting mouse Kupffer cells within an extraordinarily short period of time using laser capture microdissection (LCM). METHODS: Tissues are complex structures comprised of a heterogeneous population of interconnected cells. LCM offers a method of isolating a single cell type from specific regions of a tissue section. LCM is an essential approach used in conjunction with molecular analysis to study the functional interaction of cells in their native tissue environment. The process of labeling and acquiring cells by LCM prior to mRNA isolation can be elaborate, thereby subjecting the RNA to considerable degradation. Kupffer cell labeling is achieved by injecting India ink intravenously, thus circumventing the need for in vitro staining. The significance of this novel approach was validated using a cholestatic liver injury model. RESULTS: mRNA extracted from the microdissected cell population displayed marked increases in colony-stimulating factor-1 receptor and Kupffer cell receptor message expression, which demonstrated Kupffer cell enrichment. Gene expression by Kupffer cells derived from bile-duct-ligated, versus sham-operated, mice was compared. Microarray analysis revealed a significant (2.5-fold, q value < 10) change in 493 genes. Based on this fold-change and a standardized PubMed search, 10 genes were identified that were relevant to the ability of Kupffer cells to suppress liver injury. CONCLUSION: The methodology outlined herein provides an approach to isolating high quality RNA from Kupffer cells, without altering the tissue integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。