Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

阅读:3
作者:Battaglia Giuseppe, Busceti Carla L, Molinaro Gemma, Biagioni Francesca, Traficante Anna, Nicoletti Ferdinando, Bruno Valeria
We examined whether selective activation of mGlu4 metabotropic glutamate receptors attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage in mice. C57BL mice were treated with a single dose of MPTP (30 mg/kg, i.p.) preceded, 30 min earlier, by a systemic injection of the mGlu4 receptor enhancer N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). PHCCC was injected either subcutaneously in cremophor EL or intraperitoneally in saline containing 50% DMSO. PHCCC treatment (3 or 10 mg/kg) significantly reduced MPTP toxicity, as assessed by measurements of the striatal levels of dopamine and its metabolites and by tyrosine hydroxylase, dopamine transporter, and glial fibrillary acidic protein immunostaining in the corpus striatum and substantia nigra. In another set of experiments, a higher cumulative dose of MPTP (80 mg/kg divided into four injections with 2 h of interval) was injected to mGlu4-/- mice and their Sv129/CD1 wild-type controls. A higher dose was used in these experiments because Sv129/CD1 mice are less sensitive to MPTP toxicity. Systemic administration of PHCCC was protective in wild-type mice but failed to affect nigrostriatal damage in mGlu4-/- mice. Finally, unilateral infusion of PHCCC in the external globus pallidus protected the ipsilateral nigrostriatal pathway against MPTP toxicity. These data support the view that mGlu4 receptors are potential targets for the experimental treatment of parkinsonism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。