Accurately estimating respiratory rate (RR) has become essential for patients and the elderly. Hence, we propose a novel method that uses exact Gaussian process regression (EGPR)-assisted hybrid feature extraction and feature fusion based on photoplethysmography and electrocardiogram signals to improve the reliability of accurate RR and uncertainty estimations. First, we obtain the power spectral features and use the multi-phase feature model to compensate for insufficient input data. Then, we combine four different feature sets and choose features with high weights using a robust neighbor component analysis. The proposed EGPR algorithm provides a confidence interval representing the uncertainty. Therefore, the proposed EGPR algorithm, including hybrid feature extraction and weighted feature fusion, is an excellent model with improved reliability for accurate RR estimation. Furthermore, the proposed EGPR methodology is likely the only one currently available that provides highly stable variation and confidence intervals. The proposed EGPR-MF, 0.993 breath per minute (bpm), and EGPR-feature fusion, 1.064 (bpm), show the lowest mean absolute error compared to the other models.
Dual-Sensor Signals Based Exact Gaussian Process-Assisted Hybrid Feature Extraction and Weighted Feature Fusion for Respiratory Rate and Uncertainty Estimations.
阅读:3
作者:Lee Soojeong, Moon Hyeonjoon, Al-Antari Mugahed A, Lee Gangseong
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Nov 1; 22(21):8386 |
| doi: | 10.3390/s22218386 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
