Tensile and Compressive Properties of Woven Fabric Carbon Fiber-Reinforced Polymer Laminates Containing Three-Dimensional Microvascular Channels.

阅读:3
作者:An Ziqian, Cheng Xiaoquan, Zhao Dafang, Ma Yihao, Guo Xin, Cheng Yujia
Microvascular self-healing composite materials have significant potential for application and their mechanical properties need in-depth investigation. In this paper, the tensile and compressive properties of woven fabric carbon fiber-reinforced polymer (CFRP) laminates containing three-dimensional microvascular channels were investigated experimentally. Several detailed finite element (FE) models were established to simulate the mechanical behavior of the laminate and the effectiveness of different models was examined. The damage propagation process of the microvascular laminates and the influence of microvascular parameters were studied by the validated models. The results show that microvascular channels arranged along the thickness direction (z-direction) of the laminates are critical locations under the loads. The channels have minimal effect on the stiffness of the laminates but cause a certain reduction in strength, which varies approximately linearly with the z-direction channel diameter within its common design range of 0.1~1 mm. It is necessary to consider the resin-rich region formed around microvascular channels in the warp and weft fiber yarns of the woven fabric composite when establishing the FE model. The layers in the model should be assigned with equivalent unidirectional ply material in order to calculate the mechanical properties of laminates correctly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。