Beyond Henssge's Formula: Using Regression Trees and a Support Vector Machine for Time of Death Estimation in Forensic Medicine.

阅读:4
作者:Dani Lívia Mária, Tóth Dénes, Frigyik Andrew B, Kozma Zsolt
Henssge's nomogram is a commonly used method to estimate the time of death. However, uncertainties arising from the graphical solution of the original mathematical formula affect the accuracy of the resulting time interval. Using existing machine learning techniques/tools such as support vector machines (SVMs) and decision trees, we present a more accurate and adaptive method for estimating the time of death compared to Henssge's nomogram. Using the Python programming language, we built a synthetic data-driven model in which the majority of the selected tools can estimate the time of death with low error rates even despite having only 3000 training cases. An SVM with a radial basis function (RBF) kernel and AdaBoost+SVR provided the best results in estimating the time of death with the lowest error with an estimated time of death accuracy of approximately ±20 min or ±9.6 min, respectively, depending on the SVM parameters. The error in the predicted time (tp[h]) was tp±0.7 h with a 94.45% confidence interval. Because training requires only a small quantity of data, our model can be easily customized to specific populations with varied anthropometric parameters or living in different climatic zones. The errors produced by the proposed method are a magnitude smaller than any previous result.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。