Multivariate pattern analysis (MVPA) approaches can be applied to the topographic distribution of event-related potential (ERP) signals to "decode" subtly different stimulus classes, such as different faces or different orientations. These approaches are extremely sensitive, and it seems possible that they could also be used to increase effect sizes and statistical power in traditional paradigms that ask whether an ERP component differs in amplitude across conditions. To assess this possibility, we leveraged the open-source ERP CORE data set and compared the effect sizes resulting from conventional univariate analyses of mean amplitude with two MVPA approaches (support vector machine decoding and the cross-validated Mahalanobis distance, both of which are easy to compute using open-source software). We assessed these approaches across seven widely studied ERP components (N170, N400, N2pc, P3b, lateral readiness potential, error related negativity, and mismatch negativity). Across all components, we found that multivariate approaches yielded effect sizes that were as large or larger than the effect sizes produced by univariate approaches. These results indicate that researchers could obtain larger effect sizes, and therefore greater statistical power, by using multivariate analysis of topographic voltage patterns instead of traditional univariate analyses in many ERP studies.
Using multivariate pattern analysis to increase effect sizes for event-related potential analyses.
阅读:4
作者:Carrasco Carlos Daniel, Bahle Brett, Simmons Aaron Matthew, Luck Steven J
| 期刊: | Psychophysiology | 影响因子: | 2.800 |
| 时间: | 2024 | 起止号: | 2024 Jul;61(7):e14570 |
| doi: | 10.1111/psyp.14570 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
