Sustained treatment with a 5-HT(2A) receptor agonist causes functional desensitization and reductions in agonist-labeled 5-HT(2A) receptors despite increases in receptor protein levels in rats.

阅读:4
作者:Shi Ju, Landry Michelle, Carrasco Gonzalo A, Battaglia George, Muma Nancy A
Adaptive changes in serotonin2A (5-HT(2A)) receptor signaling are associated with the clinical response to a number of psychiatric drugs including atypical antipsychotics and selective serotonin reuptake inhibitors. The present study examined possible mechanisms of agonist-induced desensitization of 5-HT(2A) receptors in rat hypothalamic paraventricular nucleus (PVN) after 4 and 7 days of treatment with 1mg/kg (-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI). The magnitude of 5-HT(2A) receptor-mediated oxytocin release decreased 78% after 4 days and 61% after 7 days of DOI treatment. Similarly, the magnitude of ACTH release following 1mg/kg DOI decreased by 31% after 4 days and 38% after 7 days of DOI treatment. Treatment with DOI for either 4 or 7 days caused a significant decrease (by approximately 50%) in the high-affinity 5-HT(2A) receptor binding as measured by (125)I-DOI binding compared to saline-treated control rats. In contrast, western blot analysis demonstrated a significant increase in 5-HT(2A) receptor protein levels with 4 or 7 days of DOI treatment to 167% and 191% of control levels, respectively. Real time quantitative RT-PCR analysis revealed a small but nonsignificant increase in the levels of 5-HT(2A) mRNA following treatment with DOI for 4 or 7 days. Taken together, the 5-HT(2A) receptor-stimulated hormone responses, agonist binding data and western blot data suggest that although agonist treatment increases the levels of 5-HT(2A) receptor protein in the cell membrane, there is a reduction in the population of 5-HT(2A) receptors capable of high-affinity binding and mediating a functional response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。